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ABSTRACT

This study aims to develop an agricultural land recommendation system by integrating the Internet
of Things (IoT) and machine learning (ML). IoT devices, including the JXBS-3001 soil sensor and
Raspberry Pi Pico RP2040, collect real-time soil data, which is analyzed using the decision tree
(DT) algorithm. The DT algorithm is chosen for its simplicity, efficiency, and interpretability over
random forest (RF) and k-nearest neighbors (k-NN). It provides structured decision-making, faster
training, and better handling of numerical data for parameters such as soil pH, nutrient content
(NPK), moisture levels, and temperature. The findings show that the system provides accurate
crop recommendations, helping farmers make informed decisions. The integration of IoT and ML
enhances land assessment and optimizes agricultural productivity. Future improvements could
include weather analysis and plant disease detection to further support decision-making.
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Agricultural management refers to the
oversight of farming practices, which play
a vital role in the agricultural industry
by directly influencing the primary goal
of agriculture: ensuring a sustainable
food supply. According to the Food and
Agriculture Organization of the United
Nations (FAO) (2021), recent years have
seen increasing demands for agricultural
practices to deliver at least 70% of global
food production annually. This requirement
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is driven by the rapid growth of the global population, which is projected to reach
approximately 9.6 billion by 2050 (FAO, 2021). Adding to the challenge, the availability
of arable land continues to decline each year, further intensifying the need for effective
agricultural management (Wang, 2022).

Indonesia is one of the countries with immense agricultural potential, supported
by abundant natural resources and a favorable climate. However, the implementation
of agricultural recommendation systems in farming activities remains underdeveloped
(Iskandar, 2021). This is concerning, as limited knowledge among farmers about critical
factors in agricultural decision-making, such as identifying the optimal planting season,
evaluating land performance, or determining the most suitable crops for specific periods,
continues to hinder productivity (Iskandar, 2021; Yundari, 2017). If left unaddressed,
these challenges could lead to suboptimal agricultural practices, ultimately failing to meet
Indonesia's growing demand for agricultural output. This condition indicates the importance
of data-based decision-making to support farmers in choosing the most suitable crops
(Priyadharshini et al., 2021; Ridoy et al., 2024).

To promote sustainability in Indonesia’s agricultural industry, innovation is essential
across various aspects of farming practices (Rajeswari et al., 2018). One key area for
innovation is decision-making, which can be significantly enhanced by developing
agricultural recommendation systems powered by ML (Singh et al., 2024). ML, a branch
of artificial intelligence, focuses on developing methods that can learn from past data
(Lestari et al., 2023). ML has emerged as a transformative tool across many industries,
including agriculture, by providing advanced, data-driven solutions to boost efficiency and
productivity (Musanase et al., 2023; Ridoy et al., 2024). In agriculture, ML leverages data
from sensors and other sources to analyze land conditions, predict yields, and optimize
resource use (Akintuyi, 2024). This technology enables farmers to make more accurate,
data-informed decisions while mitigating risks associated with weather fluctuations and
soil variability. By integrating ML, agriculture can evolve toward smarter, more sustainable
methods, paving the way for a revolutionary shift in farming practices.

The main objective of this study is to develop a technology-driven agricultural land
recommendation system. This system integrates [oT and ML to provide farmers with precise
recommendations for selecting agricultural land suitable for their desired crops. [oT is a
concept of integration that enables any object to send data through network modernization
(Kiruthika & Karthika, 2023). In this study, the system acts as an intermediary between
farmers and the system, enabling farmers to input desired parameters directly through the
interface. These parameters are then transmitted to the ML system for further processing.
Various ML techniques can be applied for recommendations, such as DT, Naive Bayes
(NB), RF, rotation forest, &-NN, artificial neural networks (ANN), and support vector
machine (SVM), among others. Each method has its unique strengths and limitations. DT,
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for instance, is chosen for its high accuracy and ability to trace each decision step taken
by the algorithm. Additionally, DT can seamlessly integrate with database systems, offer
strong accuracy, and identify unexpected data combinations (Sihombing & Arsani, 2021).
It also effectively represents patterns, knowledge, or insights in a decision-tree format
(Khoeri & Mulyana, 2021).

By integrating IoT and ML to facilitate farmers with the system and employing ML
algorithms, specifically the DT method, the proposed system aims to conduct in-depth
analyses of collected data. This process ultimately delivers tailored recommendations for
the most suitable crop commodities for specific agricultural lands. Therefore, this study
aims to design and develop an agricultural land recommendation system based on [oT and
ML technologies.

RELATED WORKS

IoT-based land-monitoring systems have attracted significant attention in recent years,
enabling data-driven decision-making in agriculture. [oT enables real-time data acquisition
from diverse sensors, including moisture, pH, and nutrient sensors, to assess soil conditions
(Aditya et al., 2024; Gaikwad et al., 2021; Garcia et al., 2020; Ramson et al., 2021).
However, existing loT-based systems often lack intelligent decision-making capabilities,
necessitating the integration of ML models to enhance agricultural recommendations.

Various ML techniques have been explored in crop recommendation, with studies
utilizing RF, SVM, and ANN to improve predictive accuracy (Lokhande et al., 2022; Qiu
et al., 2021; Vemulapalli et al., 2024). The study by Modi et al. (2021) highlighted the
risks associated with improper crop selection, including reduced yields and severe issues,
such as rising suicide rates among farmers. To mitigate these challenges, they proposed
a crop recommendation system based on the SVM algorithm. This system analyzed soil
parameters, including nitrogen (N), phosphorus (P), potassium (K), pH, moisture levels,
rainfall, and temperature. Achieving an accuracy rate of 97%, the system provided farmers
with precise recommendations for selecting the most suitable and productive crops, thereby
reducing errors in crop selection and increasing agricultural output. The suggested approach
does not focus on real-time processing.

Several studies have applied DT algorithms for agricultural recommendations due to
their efficiency and interpretability (Khoeri & Mulyana, 2021; Sihombing & Arsani, 2021).
While DT offers advantages in terms of fast training and explainability, its performance in
handling complex feature interactions remains a challenge.

In a separate study by Islam et al. (2023), the authors present an [oT-based solution that
integrates ML techniques to optimize crop production through real-time soil monitoring.
The system uses various sensors to measure soil nutrients, moisture, temperature, and
humidity, and sends the data to a server for analysis. Using ML algorithms, the system
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provides customized crop recommendations and fertilizer-use guidelines. However, this
model cannot assess the percentage accuracy of its crop recommendations.

Another notable study by Rao et al. (2022) explored the impact of nutrient deficiencies
and incorrect crop selection on agricultural outcomes. The research compared three ML
algorithms — &-NN, DT, and RF classifier — using Gini and entropy criteria. The findings
revealed that the RF classifier achieved the highest accuracy of 99.32%, while &-NN had the
lowest accuracy of 97.04%. The DT algorithm performed moderately, with the Gini criterion
yielding better results than entropy. However, this study still has limitations, particularly
the lack of integration between crop prediction and IoT technology, which could enable
real-time data collection to improve the accuracy and relevance of recommendations.

Recent advancements in agricultural technology, particularly the integration of IoT
and ML, enable farmers to collect and analyze data in real time (Senapaty et al., 2023).
In a separate study by Islam et al. (2023), the authors present an loT-based solution that
integrates ML techniques to optimize crop production through real-time soil monitoring.
The system uses various sensors to measure soil nutrients, moisture, temperature, and
humidity, and sends the data to a server for analysis. Using ML algorithms, the system
provides customized crop recommendations and fertilizer-use guidelines. The suggested
approach does not consider portability for farmers, as it is not designed in an integrated
device that can be easily transported to various locations.

This study addresses the gap in the literature by integrating loT and DT-based ML
models to provide real-time, resource-efficient, and interpretable crop recommendations.
Unlike previous works that rely on static datasets, this research incorporates real-time
sensor data via [oT devices, enabling dynamic adjustments based on environmental
conditions. Additionally, the proposed system optimizes DT hyperparameters to balance
accuracy and computational efficiency, making it more suitable for deployment in low-
power agricultural devices.

MATERIALS AND METHODS
IoT Devices and Sensors

This study uses three sensor types: a 3.5-inch thin-film transistor liquid-crystal display (TFT
LCD) module (China), a Raspberry Pi Pico RP2040 (Raspberry Pi Foundation, United
Kingdom), and a JXBS-3001 soil sensor (Weihai Jingxun Changtong Electronic Technology
Co., Ltd., China). The circuit diagrams in Figures 1 and 2 present the configuration and
specifications of the proposed IoT system components.

a. 3.5-inch TFT LCD

TFT LCD is a type of display screen that uses thin-film transistors to control each pixel
individually, resulting in sharper and more responsive images. In this system, a TFT
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LCD displays the results of soil sensor data analysis. This component is a 3.5-inch
(77.98 mm x 43.94 mm) touch display with a resolution of 320 x 240 pixels, offering
sharp, detailed graphics for visual interfaces. It is equipped with a resistive touchscreen,
allowing users to interact directly with the device. The display uses an ILI9341-16
controller that supports a 16-bit data interface. It is powered by the Universal TFT
Library from Rinky-Dink Electronics, which simplifies programming across a variety
of Arduino platforms. The display is compatible with the Arduino Mega and Arduino
Due microcontrollers, both of which offer sufficient memory and I/O pins to handle
the high-resolution data from the display. However, it does not support Arduino Uno
with an 8-bit serial interface due to data transmission limitations.

Raspberry Pi Pico RP2040

The Raspberry Pi Pico RP2040 module serves as the primary microcontroller,
facilitating communication between sensors and other system components. This
printed circuit board (PCB) supports the SmartMatrix Arduino Library, ensuring
optimal compatibility for a variety of visual applications. The Raspberry Pi Pico
RP2040 delivers strong data processing capabilities, bolstered by Wireless Fidelity
(Wi-Fi) connectivity. This enables the system not only to receive input from sensors
but also to process the data using ML algorithms and transmit or receive information
wirelessly. With good energy efficiency, this module also supports SmartMatrix HUB75
connectivity, specifically designed for red, green, and blue (RGB) matrix light-emitting
diodes (LEDs). The pinouts available on this module enable high-precision, high-speed
LED control, ensuring effective synchronization of visual elements on LED displays.

JXBS-3001 Soil Sensor

The JXBS-3001 soil pH sensor is an important component in the soil monitoring
system, designed to integrate seamlessly with the Raspberry Pi Pico RP2040 via
RS-485 communication. Powered by a 12-24V DC supply and utilizing the Modbus
protocol, this sensor is capable of measuring soil parameters, including NPK, total
dissolved solids (TDS), moisture, temperature, and pH, with a precision of =0.3. The
sensor's real-time data is transmitted to the Raspberry Pi Pico RP2040 for processing
and displayed via an LED interface or a TFT screen. The integration of the JXBS-
3001 soil sensor with the Raspberry Pi Pico RP2040 enables the system to provide
optimal recommendations on crop land suitability. Supported by the microcontroller's
rapid processing capabilities and wireless connectivity, the system ensures efficiency,
stability, and reliability in field applications.

Direct current to direct current (DC-to-DC) step-up converter

The DC-to-DC step-up converter, also known as a boost converter, is a device that
increases the input voltage to a higher output level. It is particularly useful when a

Pertanika J. Sci. & Technol. 33 (6): 2833 - 2854 (2025) 2837



Bayu Rima Aditya, Anindia Agusta Ken Nadila, Muhammad Qanit Al-Hijran, Muhammad Bintang Ramadhan and Yudha Ginanjar

device requires a higher voltage than the available power source, such as boosting
low voltage from a battery to operate specific electronic components. The boost
converter uses inductive charging to efficiently raise the voltage, making it an ideal
choice for portable or renewable energy systems. In microcontroller-based sensor and
control applications, the step-up converter plays a critical role in maintaining optimal
performance by ensuring adequate voltage levels for various system components, even
when operating on limited power sources.

e. 3.7V battery

The battery serves as the primary or backup power source in electronic systems,
providing stable and continuous energy to ensure smooth operations. In applications
involving the Raspberry Pi Pico RP2040 or similar microcontrollers, the battery enables
portable, independent operation, eliminating the need for a constant connection to an
external power source. The battery type and capacity are tailored to meet the device's
power requirements and the desired operational duration.

f. RS-485

RS-485 is a serial communication protocol widely used to connect devices that require
long-distance communication in industrial networks or control systems. Its advantages
include its ability to transmit data over long cable lengths with minimal interference and
its support for multipoint communication. In systems with sensors and microcontrollers,
RS-485 is often used to ensure stable, efficient device-to-device communication, even
in challenging environments.

The architectural diagram illustrates a structured system integrating the JXBS-3001
soil sensor with the Raspberry Pi Pico RP2040, employing Wi-Fi communication to send
data to an external application programming interface (API). The JXBS-3001 soil sensor
measures soil parameters such as moisture, pH, and nutrients, transmitting data through
the RS-485 protocol to the Raspberry Pi Pico RP2040, which serves as the system's data
processing hub. RS-485 ensures reliable communication over long distances with minimal
interference. The Raspberry Pi Pico RP2040 processes sensor data and directs it to two
main outputs: first is real-time visualization on a 3.5-inch TFT LCD for immediate user
feedback, and second is transmission via Wi-Fi using the Transmission Control Protocol/
Internet Protocol (TCP/IP) to an external API for remote monitoring and integration with
other applications. TCP/IP is a network protocol that standardizes communication on the
internet and local networks. The system is powered by a 3.7 V battery connected to a DC-
to-DC step-up converter to ensure a stable and sufficient voltage supply. For charging,
there is a charger controller module that is connected to the recreational vehicle (RV) DC
charger, managing the battery recharge to keep it charged and allowing the system to operate
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for extended periods without interruption. Overall, this integrated soil monitoring system
provides real-time data visualization, remote data transmission, and optimized power
efficiency with a rechargeable battery, making it ideal for field applications independent
of constant external power sources.

RS-485 3.5-inch
connector TFT LCD
driver
board

TP4056
charging
module
Rasberry
Pi Pico

Step-up
converter Power

switch

Lithium-ion
18650
batteries

Figure 1. Block diagram of a portable device
Note. TFT LCD = Thin-film-transistor liquid-crystal display; RS-485 = Recommended standard 485

Wi-Fi
JXBS-3001 |:I‘> Raspberry
soil sensor| Rs485 Pi Pico

R2040
—> 3.5-inch
TFTLCD
Y
i
battery converter|
Charger bc
ntroller | charger
co RV

Figure 2. Schematic of an embedded system
Note. TFT LCD = Thin-film-transistor liquid-crystal display; TCP = Transmission Control Protocol;
IP = Internet Protocol; API = Application programming interface; DC = Direct current
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Data Transmission Process

In the described communication system, TCP/IP serves as the foundational network
protocol, enabling data exchange between devices and servers via Hypertext Transfer
Protocol (HTTP), a protocol used for data exchange over the internet. The process begins
with the device sending a request to the server using the POST method. Data is structured
in JavaScript Object Notation (JSON) format and included in the HTTP body. TCP ensures
reliable delivery and correct sequencing of data, while IP handles addressing and routing
across the network.

Once the server receives the data, it processes it based on the predefined application
logic. The server then responds to the device in JSON format via HTTP. TCP connection
ensures that the response data maintains integrity and proper sequencing, while [P manages
addressing and routing to the correct destination on the network. The HTTP protocol
governs the formatting and structuring of data communication, ensuring it can be understood
and correctly processed.

The device then receives the server's response and displays the information to the
user. This entire communication process, from sending a request to receiving a response,
is supported by TCP/IP, which provides the basic mechanism for data transmission.
Meanwhile, HTTP offers an application-level protocol to structure and format the transmitted
data efficiently. This communication cycle highlights the integral implementation of TCP/
IP in supporting efficient and structured HTTP-based communications.

ML Methods

a. DT algorithm classification report

The croprekomendasi.csv dataset has been analyzed and cleaned to improve data quality
for crop recommendations based on environmental factors. The initial analysis showed
no missing values, but several features, such as illumination (illum), rainfall (rain), and
wind speed (wind), contained extreme values or uneven distributions. For instance,
the illumination value reached 216, while 75% of the data had values below 9.86.
Similarly, rainfall and wind speed had many zero values, as well as some extremely
high values. To address this issue, the interquartile range (IQR) method was applied
to detect and remove outliers. As a result, 998 data points (32.6%) were removed from
the total 3,063 records, leaving 2,065 cleaned data points.

The DT is chosen over RF and £-NN due to its simplicity, efficiency, and ease of
interpretation. Its clear tree structure allows for more transparent analysis than RF,
which consists of multiple trees and is difficult to trace, and A-NN, which does not
build an explicit model. In terms of efficiency, the DT trains are faster than RF, which
requires multiple iterations to construct various DTs, and it also predicts faster than
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k-NN, which needs to compare each new data point with the entire training dataset.
Additionally, the DT does not rely on distance metrics like A&~-NN, making it more
suitable for data with numerical and categorical attributes that have different scales.
This algorithm is also easier to optimize as it does not require extensive parameter
tuning, such as determining the number of trees in RF or selecting the optimal & value
in k~-NN. Another advantage is its ability to handle hierarchical data, such as classifying
crops based on environmental factors, which is difficult for k-NN, which relies solely
on data proximity without understanding rule-based hierarchies. With these advantages,
the DT becomes a more suitable choice for classifying sensor data and processed data.

The backend service will store the accumulated data in the database. The stored data
includes both raw and processed sensor data. A popular machine-learning technique
for classification tasks is the DT algorithm, which is based on predictive modeling.
In this context, the algorithm partitions a dataset into groups based on specific
characteristics relevant to the target categories. The DT starts with a root node and
branches into smaller nodes, where each branch represents a decision or classification
based on attributes. To produce leaf nodes that reflect the most appropriate classification
choices, the primary objective is to optimize homogeneity within each data subset at
each branch.

Choosing the most informative attribute to divide the data into smaller subsets is
the first step in the classification process. This attribute is selected based on criteria
such as information gain (IG) or the Gini index, which measure how well it can classify
the data. For instance, soil pH or moisture might be critical attributes for predicting
suitable crops, as they have significant discriminative strength for separating plant
types based on their needs.

The DT divides the data iteratively during the learning process, with each new node
representing a classification decision based on the tested attribute's value. Once the tree
is fully developed, new data can be classified by following a series of binary decisions
that guide the data from the root node to the leaf nodes, where a final classification or
recommendation is provided.

DT ML algorithm for recommendations

To make crop recommendations, the DT algorithm divides the dataset into smaller
subsets based on relevant characteristics, such as soil pH, nutrient content (NPK),
moisture levels, and temperature. The algorithm maps the relationships between these
parameters and the crops best suited to the conditions, using a DT structure derived
from a series of if-then-else conditions. Each node in the tree represents a test on a
specific feature (e.g., soil pH), the branches show the test results, and the final leaves
offer the crop recommendation.
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The tree-building process involves techniques that either maximize IG or minimize
the Gini index (GI). At each step, the algorithm selects the most significant attribute
to split the data and create a new node. The IG is calculated using an entropy formula:

Entrophy (S)=— ) P; P,

n
i=1

In this context, P; represents the proportion of the class i within subset S. The IG
is then calculated as follows:

T,
IG(T,A) = Entropy (T) — Z %Entrophy (T,)
vEValues (4)

where T is the entire dataset, A is the attribute being tested, and T, is the subset
of data where attribute A has value v. A higher IG indicates that the attribute is more
effective in dividing the data, making it a higher-priority candidate for a DT node.

Once the DT is constructed, new data (e.g., soil sensor data) is analyzed by starting
at the root node and traversing branches based on the conditions the data meet until a
leaf node is reached that provides a crop recommendation. This algorithm effectively
recommends the best crop varieties based on agricultural conditions, including
soil pH, moisture levels, and temperature. Its strength lies in its ability to handle
multidimensional data and produce decisions that farmers can understand and use
with ease.

Proposed Framework

The proposed framework integrates [oT sensors, data transmission, and ML to enhance
decision-making processes in agriculture. The system employs various soil sensors (pH,
NPK, TDS, moisture, and temperature) installed in agricultural fields to measure soil
conditions in real-time. The proposed framework is illustrated in Figure 3. These sensors
are connected to portable devices used by farmers, which serve as data-collection hubs. The
portable devices are equipped with Raspberry Pi Pico RP2040, responsible for gathering
data from sensors and transmitting it to remote servers via the Internet using TCP/IP and
HTTP protocols.

ML algorithms are used to process the data when it arrives at the server. These
algorithms analyze soil parameters and generate personalized crop recommendations
tailored to the current soil conditions. Appropriate crop varieties, ideal planting times,
and accurate fertilizing techniques are among the suggestions. After that, the analysis

2842 Pertanika J. Sci. & Technol. 33 (6): 2833 - 2854 (2025)



ML Enabled IoT System for Agricultural Land Recommendation

results are then sent back to the farmer's portable device, where they may see the data and
suggestions right on the screen.

Additionally, the system provides continuous soil condition monitoring, enabling
farmers to make data-driven decisions that enhance productivity and efficiency. To
accommodate an increasing number of users and agricultural lands, the framework is
designed with efficient server management, including optimized database handling, caching
mechanisms, and load balancing strategies to maintain performance as demand grows. By
combining IoT and ML technologies with a well-structured server-based infrastructure,
the proposed method aims to optimize land use and maximize agricultural yields with

precision and reliability.
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Figure 3. Framework for intelligent crop recommendation
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RESULTS
Experimental Setup

The system comprises a single sensor that measures critical soil parameters, such as pH,
moisture, and nutrient levels. This sensor connects to a microcontroller unit (MCU) via
serial input/output (I/0), which manages data acquisition from the sensor. The MCU serves
as the primary processing hub, handling the collection, processing, and transmission of
sensor data to other system components. Figure 4 illustrates the system block diagram of
the proposed system.

A display module is incorporated to provide real-time visualization of the sensor data,
enabling users to monitor soil conditions instantly. Additionally, a Wi-Fi module facilitates
wireless data transmission, linking the device to a server or cloud system via TCP/IP and
HTTP protocols. The server can further analyze the transmitted data using ML algorithms
to generate recommendations for crops best suited to the current soil conditions.

The system also includes a storage component to store data locally for historical records
or in-depth analysis. A power supply ensures all components remain operational, supporting
uninterrupted functionality. This experimental setup is designed to continuously collect
soil data, enabling ML-driven analyses that deliver actionable crop recommendations that
can be directly accessed via the display.

DISPLAY
MCU Wi-Fi

9
3
SENSOR <
[
®

Storage Power

supply

Figure 4. System block diagram
Note. SERIAL I/O = Serial input/output; MCU = Microcontroller unit; Wi-Fi = Wireless Fidelity
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Data Collection and Preprocessing

The collected data originates from real-time environmental and soil monitoring, serving
as input for training, validating, and testing the ML model. High-quality, relevant data is
crucial to developing an accurate and effective model. The data collection process follows
these steps:

1. Identifying data sources
2. Determining the type, quantity, and quality of data
3. Labeling the data

4. Defining data format and structure

Data preprocessing is an essential step in evaluating the model's performance and
ensuring its reliability. Therefore, data cleaning, data transformation, data separation,
feature engineering, handling imbalanced data, normalization, and regularization, data
integration and reduction, data visualization, and organizing data into a format suitable
for training and testing the model are carried out.

Summary Statistics of a Feature in ML

Tables 1 and 2 present a statistical summary of a specific feature within the ML dataset. They
include the minimum, maximum, and average values of all sensor parameters observed
for the crops under study, specifically corn and shallots.

Table 1
Statistical summary of corn

Parameter Min Mean Max
N (mg/kg) 0.00 6.32 17.00
P (mg/kg) 29.40 59.96 85.64
K (mg/kg) 23.00 52.38 78.18
Soil temperature (°C) 9.84 26.11 38.63
Humidity (%) 46.62 86.21 99.90
pH 22.80 55.13 69.50
Conductivity (uS/cm) 97.20 213.9 267.0
Soil humidity (%) 12.88 25.44 46.17
Temperature (°C) 18.30 26.09 35.60
TDS (ppm) 48.40 106.70 133.18
Salinity (ppt) 53.20 117.20 146.30

Note. Min = Minimum; Max = Maximum; N = Nitrogen; P = Phosphorus; K = Potassium; pH = Potential of
hydrogen; TDS = Total dissolved solids
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Table 2
Statistical summary of shallots

Parameter Min Mean Max
N (mg/kg) 0.00 1.53 69.20
P (mg/kg) 5.03 32.73 206.70
K (mg/kg) 2.70 24.90 200.10
Soil temperature (°C) 16.81 24.84 35.70
Humidity (%) 42.51 80.01 99.90
pH 29.83 48.65 90.00
Conductivity (uS/cm) 38.06 157.53 518.11
Soil humidity (%) 0.58 9.68 33.43
Temperature (°C) 18.30 26.09 35.60
TDS (ppm) 19.22 78.53 258.80
Salinity (ppt) 21.27 86.17 284.50

Note. Min = Minimum; Max = Maximum; N = Nitrogen; P = Phosphorus; K = Potassium; pH = Potential of
hydrogen; TDS = Total dissolved solids

DT Algorithm Classification Report

Figure 5 illustrates the classification report generated by the DT algorithm. The table
evaluates each crop, providing metrics such as precision, recall, F1 score, and support.
Precision represents the proportion of correctly identified positive cases, while recall
measures the proportion of actual positive instances that were accurately classified.
The F1 score is a harmonic mean of precision and recall, offering a balanced metric for
performance evaluation. Support indicates the number of samples used to calculate each
metric. Additionally, the report includes macro averages and weighted averages to reflect
performance across multiple classes.

DecisionTrees's Accuracy is: 98.36779107725789
precision recall fl-score  support

0 0.99 0.98 0.99 540

1 0.97 0.99 0.98 379

accuracy 0.98 919
macro avg 0.98 0.98 0.98 919
weighted avg 0.98 0.98 0.98 919

Figure 5. Classification report for a decision tree model
Note. avg = Average
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Accuracy of Crop Recommendation Table3

Models Accuracy of crop recommendation
The XGBoost, known for its ensemble No. Model Accuracy
approach to combining DT models, and the 1 Random forest 0.99
RF, which similarly aggregates multiple 2 SVM 0.90
DTs, generally outperform standalone 3 Naive Bayes 0.91
DT algorithms. These ensemble methods 4 Decision tree 0.98

5 XGBoost 0.99

leverage the collective insights of multiple
trees, enhancing their overall predictive Note- SVM = Support vector machine

accuracy. In contrast, individual DTs may

underutilize some features during training. The significance of each attribute in these
models accounts for all features except those excluded during training, which can limit
the performance of a single DT.

The high accuracy achieved by the crop recommendation model reflects the rigorous
optimization techniques applied throughout its development. Careful feature selection
ensured that only the most relevant soil and environmental parameters were included,
with redundant or less impactful features removed based on correlation analysis. This
step allowed the model to focus on the most meaningful data, improving its predictive
performance. Furthermore, extensive hyperparameter tuning using techniques such as grid
search and Bayesian optimization was conducted to improve the model’s learning.

In addition, the ensemble nature of XGBoost and RF enabled the model to capture
complex relationships in the data, reducing bias and variance and improving generalization.
The dataset itself was carefully curated, cleaned, and preprocessed to ensure high data
quality, minimizing the risk of noise and inconsistencies. To further validate the model’s
robustness, cross-validation techniques were employed, ensuring that the accuracy remained
consistent across different subsets of data.

By integrating these advanced methodologies, the crop recommendation model
effectively leverages the strengths of ensemble learning and rigorous data processing,
leading to its impressive accuracy. Table 3 presents the detailed accuracy results of the
model.

The DT algorithm was chosen as the main model in this system not only because
of its high accuracy, but also because it has a low absolute error value. This low error is
significant in crop recommendations, where a small error can impact the decision taken
by the farmer, such as the selection of the wrong crop. In addition, DT offers a good
level of interpretability, which allows the system to provide clear and easy-to-understand
recommendations. The DT structure used in this model makes the results explainable in
a more transparent way. Therefore, although ensemble methods may be considered in the
future to improve the accuracy of the system, DT remains the top choice due to its balance
between good accuracy and easier interpretability.
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Dimensionality Reduction with Variable Table4

Feature Issue Absolute error of crop recommendation
In this context, XGBoost and DT models No. Model Absolute error
demonstrate minimal errors, largely 1 Random forest 0.009793
due to their ability to handle non-linear 2 SVM 0.097933
relationships and effectively manage data 3 Naive Bayes 0.091404
complexity. XGBoost employs iterative 4 Decision tree 0.013058

5  XGBoost 0.008705

boosting techniques to refine model
performance, while DTs adaptively learn Note- SVM = Support vector machine
the structural intricacies of data. DTs are
particularly effective in capturing non-

Environment Temperature: 27
Environment Humidity: 82

linear relationships between features and Soil Conductivity: 180
. . e So0il Humidity: 25
target variables. By adaptively partitioning Soil Nitrogen: 3
the feature space, the DT can modify Soil pH: 51
h del f .. d 1ti . Soil Phosporus: 43
the model tfor training data, resulting in Soil Potasium: 35
accurate predictions. Table 4 presents the 5011 Salinity: 98
) Soil TDS: 89
absolute error of the crop recommendation Soil Temperature: 25
model. predicted_values @
0 2885 [

Crop Recommendation Results 1 7115

Figure 6 illustrates the crop recommendation
results obtained after applying the DT  Figure 6. Soil sensor data and predicted values
ML algorithm. In the results, crops are

represented with codes: code 0 indicates shallots, while code 1 represents corn. This
classification identifies the most suitable crop for a given soil condition.

IoT-ML Enabled Agriculture Platform

This study introduces a crop recommendation model for corn and shallots, based on an
ML architecture with various parameter configurations. The DT algorithm was employed
to process and manage soil parameter data. The model’s performance was evaluated
using multiple metrics, including accuracy, loss, precision, recall, F1 score, and confusion
matrix. Experimental results demonstrated that the DT algorithm provides highly accurate
predictions for crop-to-land suitability. This is evidenced by the high accuracy achieved on
test data (98%), supporting its potential for future applications. In summary, compared to
conventional techniques, the ML-based crop and soil suitability recommendation model
with the DT model produces better crop suitability prediction outcomes. A preview of the
suggestion tool's user interface (UI) is displayed in Figures 7-10.
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CROP RECOMMENDATION
SET SAMPLING PARAMETER

#1 JAGUNG 87%

SET DURATION SAMPLING SET INTERVAL SAMPLING

- * -I-
_ #2 BAWANG MERAH 13%

Figure 7. Set sampling parameter interface Figure 8. Crop recommendation interface

VIEW PREVIOUS SAMPLES

Figure 9. View sample interface Figure 10. Proposed device

DISCUSSION

This study suggests a method based on ML and the IoT to collect data on soil parameters
and suggest appropriate crops depending on the information gathered. The JXBS-3001 soil
sensor, which measures soil characteristics like pH, moisture, and nutrient concentrations
(NPK and TDS), is one of the main components. A Raspberry Pi Pico RP2040 serves as
the data collection hub, connecting to the sensor via the RS-485 protocol. The TCP/IP and
HTTP protocols are used to send sensor data to a server, enabling remote monitoring and
real-time data processing. A portable device with a 3.5-inch TFT LCD screen provides
farmers with analyzed soil data, facilitating data-driven decision-making in the field.

On the server, data from the sensors is processed using ML models, notably the DT
algorithm, to recommend crops suited to the soil conditions. This algorithm functions as
a classification tool, utilizing the measured soil parameters as inputs. It categorizes data
into groups based on decision rules generated from the training dataset. The classification
process helps identify the most suitable crop for specific soil conditions by analyzing soil
pH, temperature, and moisture levels. Using IG and entropy, the algorithm selects the most
effective attributes to split the data, resulting in accurate and reliable recommendations.
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The primary advantage of this system lies in its use of the DT algorithm for crop
recommendation. This algorithm enables the system to develop models that handle non-
linear data, allowing precise predictions of the most suitable crops under complex soil
conditions. Furthermore, the system's ability to process large volumes of data through
a server integrated with ML models ensures efficiency in decision-making, a feat that
traditional methods often struggle to achieve.

The integration of [oT and ML within this framework also highlights the benefits of
automation and remote monitoring in agriculture. This system not only reduces farmers'
workload but also enhances land management accuracy, particularly in selecting optimal
crops. With real-time data collection, farmers can make informed decisions based on
algorithm-driven analyses while continuously monitoring soil and crop conditions through
a portable device equipped with a visual display.

Additionally, utilizing the server as a processing platform supports system scalability,
allowing ML models to improve as more data is collected from sensors. This scalability
opens the door to further development, such as integrating plant disease analysis modules
or improving yield predictions. By employing this technology, the system can significantly
increase agricultural productivity while promoting environmental sustainability by
optimizing fertilization and irrigation using accurate data.

To ensure that the developed system can be used effectively by farmers, usability testing
was conducted by considering three main aspects: efficiency, effectiveness, and system
usability scale (SUS). The test results showed that the system achieved an efficiency and
effectiveness level of 100%, indicating that users can complete tasks without obstacles
and in an efficient time. The SUS score of 81 indicates a very positive user assessment,
which classifies the system into the “excellent” category. The overall average of the three
indicators reached 93%, confirming that the user interface design, designed with farmers'
needs in mind, has resulted in an optimal usage experience in the agricultural context.

Finally, collaboration between researchers, agricultural practitioners, and technology
developers can strengthen the implementation of these solutions in the field. A participatory
approach to research and development will ensure that the resulting systems are relevant
and adaptable to the real needs of farmers, which, in turn, will increase the adoption of
technology within the agricultural sector. Through these steps, future research could make
significant contributions to the development of more efficient and sustainable agricultural
practices.

CONCLUSION

In this study, a combination of an loT-based system and ML was successfully developed
to collect soil parameter data and provide suitable crop recommendations. The use of the
JXBS-3001 soil sensor and the Raspberry Pi Pico RP2040 device allowed for the accurate
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collection of soil condition data, which was then processed using a DT algorithm to generate
data-driven recommendations.

The primary strength of this system lies in its ability to manage complex data and
provide smarter solutions for agricultural decision-making. Additionally, the integration
of [oT and ML not only enhances land management efficiency but also enables better real-
time monitoring of soil and crop conditions.

Through this approach, farmers can make more informed decisions regarding crop
selection and farming practices, ultimately contributing to increased productivity and
sustainability in the agricultural sector. This research also opens up opportunities for
further development, including the integration of weather analysis modules and plant
disease detection, which could further strengthen the system in addressing the challenges
of modern agriculture. Overall, the results of this study highlight the great potential of
revolutionizing agricultural practices with a more technology- and data-driven approach.

FUTURE RESEARCH

In future work, scalability testing of the system is needed to evaluate its performance in
the face of increasing data loads and higher user demands. These tests include the system's
ability to handle large data volumes, the reliability of data transmission on networks with
limited bandwidth, and the server's capacity to handle multiple simultaneous requests. All
these tests aim to ensure the system can function efficiently and reliably on a larger scale
and under varied field conditions.

Overall, the proposed system demonstrates significant potential in revolutionizing
modern agriculture by introducing a smarter and more efficient approach. The integration
of loT with ML algorithms offers a comprehensive solution that enhances crop productivity,
optimizes resource utilization, and reduces uncertainty in land management. Future work
could include further development to support weather-based farming, plant growth pattern
recognition, and more advanced pest detection systems.

This study outlines several future research directions that could expand the effectiveness
of the proposed system. First, the development of more advanced ML models, such as
ensemble algorithms or deep learning, could be applied to improve the accuracy of crop
recommendation predictions. This approach would allow the system to capture more
complex patterns in the data collected from sensors, while also enhancing the model's
resilience to data variability.

Second, there might be further advantages to incorporating weather monitoring
technology into the system. Farmers may gain a more comprehensive understanding of the
environmental factors that could impact crop development by utilizing weather prediction
modules. This would enable timelier, data-driven decision-making regarding planting,
fertilization, and irrigation.
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Furthermore, research could focus on developing early detection systems for plant
diseases. By utilizing visual data or imagery collected from drones or cameras, pattern
recognition algorithms could be employed to detect early signs of plant diseases, allowing
for prompt and efficient intervention. This would improve crop resilience and reduce yield
losses due to pest and disease outbreaks.

Additionally, more studies should examine environmental sustainability in relation to
better farming methods. Research on the application of technology that facilitates precision
farming methods could be combined to optimize land management while reducing water
and fertilizer consumption. By doing this, the system could support initiatives to preserve
ecosystem balance in addition to increasing productivity.

Although the proposed system has the potential to revolutionize modern agriculture,
it is important to note that field validation has yet to be conducted. Future research will
include comprehensive field trials to assess the system's performance under actual farming
conditions. In terms of technical limitations, the current prototype has been designed for
use in general outdoor environments but is not fully optimized for harsh field conditions
such as heavy rain or extreme weather. In addition, one major challenge is the system's
reliance on Wi-Fi or cellular networks for data transmission. In remote rural areas where
connectivity is limited or unavailable, the system cannot transmit sensor data in real time,
so crop recommendations cannot be determined. Overcoming this limitation will be a
major focus of future system upgrades, potentially through the integration of local storage
or offline processing capabilities.
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